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SUMXARP 

Methods of,automatfcallg controlling the airplane are 
revi8wed* Equations for the controlled motion including -- 

. . 

, 

- _ s 

inertia effects ,of the control are developed and methods 
of investigating the stability of the resulting fifth and 
higher order equations are presented. The equations for 
longitudinal and lateral motion wfth both ideal and non- 
ideal controls are developed in dimensionless form in 
terms of control parameters based on simple dynamic tests 
of the isolated control unit. 

,- - 

., INTRODUCTION 
'c 

Automatic control inplfes the process of making some 
physical quantity take on an arbitrary and preheterm5ne.d 
series of values without human supervision. A perfect ' 
control for aircraft would maintain the airplane along a 
desired flight path and would completely suppress undesired 
disturbances in pitching, rolling, and yarning. 

The means for applyfng such a complete constraint to 
the airplane are lacking.. In the conventional afrplane, ' 
the pilot can influence the motion only by movement of the 
elevators, the rudder, the ailerons, and the throttle. 
The law by which these controls are adjusted can be related 
to any characteristic of the motion, but the controlling 
influences can be applied only. as rolling, yarning, and 
pitching moments, and as a longitudinal force. 

The problem of automatic control lies in relating 
these controlling influences to the natural characteris- 

. . tics of the airplane so as most nearly to attain the per- 
formance-of the perfect control. 

I .- 
, In order to study the motion of the controlled air- - plane, ft is nscessary to extend tho equations of motion 
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to include the physical characteristics of the control, 
which in any actual case mill not act instantaneously and 
may possess various kinds of lag. In the following paper, 
therefors, attention is first given to the performance of 
;e;eneralized control, isolated from its controlled mem- 

and the complete controlled motion of the airplane is 
the: established in terms of Darameters based on the free 
motion of the control. 

STUDY OF PHI ISOLATED CONTROL, WITH METHODS FOR 

DETERMINING THE STABILITY OF HIGHER ORDER EQUATIONS 

Control Characteristics 

Tho controls to be discussed are all "error sensi- 
tiveu; that is, they operate to maintain some quantity 
constant but derive the impulse fcr tbeir operation from 
an error in this quantity. SBhile they can make the error 
very small, they cannot entirely eliminate it. 

‘ 
. 

Three degrees of sensitivity to the error may bo notod. 
The control force may be a function of the error magnitude, 
of the rate at which the err-or is changing, or of the sec- 
ond derivative of the error. In the most general case, the 
controlling force is proportional to 'tzoth thQ error .lnd its 
derivatives, and may be expressed as 

, 

F = alc + a2h + a,% 
_ _. 

Minorsky (reference 1) has suggested that tho error 
and its derivatives might also govern the rata at which 
tho controlling force was applied. The two add?t'ional 
casts that he advan'ces may be written as 

1 

d2F/d2t = ClC -t- c,i -i- CJ? 

where 
, 

c is tho error (differcnco botwcen tho value 
desfred and the actual value of the con- 
trolled guantity). * 
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F, the controlling force:' . 

a, b ; and c, constants of proportionality. - -. 

The three types will be called Class I, Class II, and 
Class III, respectively. It will be 68811 that Class I 
controls allcw a constant error when ther.e is a steady 
disturbing force. This error can be reduced by increasing 
the control sensitivity, 
inated. 

but it cannot be completely elim- 
Most automatic controls for airplanes fall in 

Class I and are usually mithout benefit of the derivative 
components (a2 and a3 =.O). . - 

Case II controls are used when the controlled quinti- 
ty is subjected to prolonged and slowly &anginq disturb- 
ances. They allow no steady-state error under constant 
disturbing influences for as long as an error is present. 
the controlling force increases. Class IIi controls admit 
steady-state err-ors only when the second derivative of the 
disturbance varies. 

-. 

The Cadtrol as a Simple System - -- 
In most cases, the assumption can be made that the 

control is equivalent to a simple system with only one de- 
qree of freedom. The exceptions are the controls in which 
two of the components have asproximate.ly equal frequencies: 
in this case, the isolated control may deveiop peculiari- 

-. 

ties ccrresponding to a syatem with more than one degree ; 

of freedom. L-For practical computations, homovcr, the con- 
trol may be replaced by an equiva.lont mass, equivalent 
inertia, equivalent "static stability," and coupling ratios. 

The control inhorcntly possesses inertia. The smaller 
its inertia, the more satisfactory a control is likely to 
be because the*'!inertia lag" is reduced. Damping is often 
added by design to eliminate the tendency of the control- 
controlled system to hunt. Servo mechanisms embodying hy- 
draulically operated pistons may possess the equivalent of 
damping because of the resistance of th6,fluid in the sup- 

-. 

ply lines to change of velocity of flow. - 

"Static stabil'itv" of the control.roquires. that a 
small departure from ihe neutral position should produce -- 
a.force in the control tending-$0 return the control to .I 
the neutral posftion. Bhen the ‘eentrolio& quantity has no 

- 

-=z 



4 N.A.C.A. TochnicS Note No.700 

inherent stabiiity of its own, the control will generally 
require static stability. Thus, an azimuth control for 
airplanes must b-e statically stable, in order that.the 
airplane -t itself insensitive to dirootion fn azimuth - 
may hold a given course. 

It fill be assumed that the Controls discussed are of 
the type which Hazen (reference 2) calls "continuous con- 
trols.'t Any error, however smazl., is considorcd to pro- 
duce .a corresponding controlling influence th.rough Gho 
me&an-lsm. Actual controls may have a small inactive zone 
within nhich they are insensitive to errors. The motion 
of these controls can be determined by solving for the in- 
active and active regions sepsrately, with due considora- 
tion for boundary conditions. 

Response of the Isolated Control 

The dynamic CharacteristScs of a control isolated 
from its controlled system can be obtained by subjecting 
the control to an arbitrary forcing function. The sim- 
plest disturbance consists of the sudden application of a 
constant force or displacement to the control. The theor:<- 
for these ~'step functions" mill nom tic devolopod. 

Lot 

X be the position of some characteristic point on 
the control, referred to the neutral position 
of the control. 

m, equivalent inertia of the control referred to X. 

c, equivalent viscous resistance (damping) of the 
control referred to X. 

k, static stability of the control referred to .I. 

L, a load suddenly asplied to the control. 

Xf' a displapement suddenly anplied to' the oontrol. 

Coordinates may, of course, be linear or polar, de- 
pendins on the physfcal arrangement of the control.. 

The equation of motion is, when the force step func- 
tion is considered, 
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L - rn% - cj, - kx = 0 (4) 

'Then let 

% be natural angular.frequency of the control b/k/d. 

5 = damping ratio, the ratio of the amount of damping 
present in the control to the amount necessary to 
produce-motion that is just short of being oscilla- 
tory.. In terms of C and wn, equation (4) is 
then 

2 + 2&U..S + tf+ =- 
ks2.. _ 

and the steady-state displacement of the control is 

*SS = L/k 

(51 

(6) 

The general solution for osciilatory motion (E c 0) 
may be developed as 

.g- - 

X/Xss = l-e hilt (~0s JF-Twnt --h s"-, sinJ3TFn.t) 
l- . .< -' 

If the motion is undamped, *his equation' simplifios ii0 

x/xss = 1 - COB U.&t (8) 

and, nhen [ = 1.00, the motion is critically damped and 
is expressed by 

x/xss = 1 - ed%lt - Wnt-wllt -, 
I - 

(9) - 

A dBmzing ratio greater than 1.00 produces motion 
similar to critically damgcd motion but more Firlugqish and, 
as it is essential that the control should operate quickly, 
the overdamped case sill not be of great inporqanoe. 

Figure 1 illustrates the effect of varying the amount 
of damping on the response of the control. .,. ., 

- _--- 
When the control fs suddenly displaced rather than 

being aisturbea Xy'a fcirce, the o<~~iSis .oXprg?shcg it8 
return to cquil%brium are the same as-those pzeszn5gci with 
the exception t@at'.the initial 1.00 is lacking. Tius , if 
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an nporiodic control (equation (9)) Fs displaced so that 
its zosftion of equilibrium varies by Xf, the control 
attains its new equilibrium according to the expression 

X 
-=e -+lt 

Xf 
-4 wntc-‘+lt (101 

due attention being paid to the proper signs. 

Rapidity of respo.nse-is desired and, since the motion 
becomes slower with increased damping, it is evide;;f;;at 
from this consideration damping should be small. 
cient damping must be retained, however, to insure that 
the corresponding oscillation rapidly decays. 

Lag in the Control 

For most controls it is a straightforward process to 
set up the equations of controlled motion, assuming that 
the control has no inertia, dead period, or friction, and 
acts instantaneously. 

It is customary to lump the deficiencies- of actual 
controls that prevent them from attaining this "ideal" per- 
formance under the general-heading of lag, and to calcu- 
late their effects approximately by some semiemgirical 
method. 

Strictly sDeak.ing, a distinction should be made be- 
tween the lag of an inactive zone at the neutral position 
of the control, and the lag that extends over the whole 
range of operation of the mechanism, such as that caused 
by the inertia of the parts. 

The methods that have been used in treating lag in a 
control may be grouped roughly under four h-eadlngs: 

1. Introduction of inactive .zon-e of control. 

2. Assumption of constant time lag. 

3, Use of semiempirical approximatZon8. 

4. Use of control characteristics. 

Method 1 has bean demonstrated by Hazen (reference 2) 
and Klemin (reference 2). The solution for the motion is 
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obtaafned in parts, with due consideration for the boundary 
conditions between regions of active and inactive control. 

Bhen lag is known to be present but cannot be exactly 
evaluated mathematically, as in the case of.lag of the hu- 
man pilot, several writers have used the approximation 
that the control response lags the error by a constant time 
interval. Mfnorsky (reference l), Galxendar, Eartree and 
Porter (reference 4), and Comley (reference 5) trectt lag 
by method 2. 

. 

Minorsky uses a Taylor's series directly so that, if 
the controlling Influence is a function of conditions m .- 
seconds previous, it may be expressed in terms of present 
time t as -. _ =-- 

f (t-m) = f(t) - mf!(t) f m2/2.1 f"(t) - . . . (11) -. . 
and if m is. small+ higher order terms can' be neglected. 

Callendar, Hartree, and Porter approach the problem 
by making the usual assumption that the solution of the 
differential equatfon is of the form 

.- 

Xt 

= AeXt (12) -. 

and then, if the control moves according to x at time 
t-m., the terms expressing the control influence depend on 

(13) 

The resulting equation is no longer linear in h 
but can be solved by expanding the exponentials in a se- 
ries and neglecting higher order terms, or by graphical 

means (reference 4). 

Garner (reference 6) has used a simplified method of 
treating control lag with empirical constants, which 
amounts to a consideration of the first two terms of ei- 
ther of the foregoing series. The semiempirical approxima- 
tions of method 8, while useful for a rough check of 'the -- 
effects of control lag, have the diffisulty of employing 
arbitrary'constants not always available in any particular 
case. 

Method 4, the intrqductlon of the -over-all fr.equoncy 
and the effoctivo damptng of the control into the expression-.. 

. for the controlled motion, has been followed in the present -i - j 

. 
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Faper. This procedure has the advantage of using quanti- 
ties that can be experimentally measured -in-the laboratory. 

L 
The introduction of addition&,l.d-egr@ss of freedom into 

the alr-eady.complex expression'for tBemotion af the air- 
plane necessitates the development of-a'method for the 
treatment.of fifth and higher' ordsr equations-. .This mcth- 
od will nom be considered. 

Higher Ordor 'Equations ' _ . 

In order that the motion of tho air_olano land itself 
to mathematical treatment, it is necessary either that all 
relations be ,linear or that only small motions bo consid- 
ered. The classical treatment of the motion of the alr- 
plane.has by nom been justified'as applicable to disturb- 
ances of agpraciable magnitude. The linearity of control 
response depends .on the ,dosig;'n of ",ho control, but violent 
movements will not be expecte.d and a linear rasponsq for 
small displacomonts is a fair assumption. . -. _-. 

Solution is o.btafned by-writing the differential equa- 
tidns of motion, assuming a solution of the form I 

x = CAke 'kt (14) ; - 

and expanding the resulting determinant into an equation 
linear in h. The difficulty lies in the solution for the 
various values of h from the equation, which is of the 
form 

- 
ahn + bhn-1 i- cp-e + din-3 + . . . . = 0 (15)-. - 

Methods are available (references 7 to 1s) for the SO---.’ 
lution of the quartic equation and for-expressing the com- 
plete motion of the uncontrolled airplane. There are also 
methods of extracting the roots, complex or real, of the 
quintic, sextic, \ 
15) that result 

and higher order 'equations (references 14, 
from controlled motion: but the methods 

are long and troublesome, especially tihon it ls dosirod to 
investigate a range of possible variations of the control _ 
relations. ‘ 

It will oft-on be sufficient to determine.simply tho 
stability of the controlled motion. * L 
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. Methods of Bouth and Hur%Kitz J . 
. 

Routh (reference 16) presents a series of tast func- 
tions mhich can be built up for any degree of linear oqua- 
tion and which indicate from the ,coefficients of the equa- 
tion whether the motion it represents will increase or de- 
cay with time. The functions are obtained by.mriting the 
sequences _-..- _. 

- -. . . 
a 5 c d':, k& q, g-! * (16) 

b (bc$3i) de. (-oedaf) f (bg-ah) h cl.?.) 

Beginning with a, each.test f.unction is derive.d 
from the one preceding it by substituting for each letter 
in sequence (7_6,), the letter or expression directly below 
it in sequence (17) (substituting zero fa 1QttQrS above 
those appearing in the original equation).. The‘.mo‘tion-is- 3 
then stable if the final function and. thQ COQffiCiQntS are 
positive; 

I Obtained in this manner, . the Bouthian test function. 
for the qufntic is .I &-g . . :: 

. - / .-- 
(bc - ad) d - b (be - af) (be - af) - (bc - ad) 

. I 
Pf- ----. 

(18) 
Hurwitz (reference 17) g:lve.s a method of obtaining 

the stability functions as an expansion of the determi- 
nant 

AH = 

Ii a 0 0 0’0. 0, . 

d C b a 0 .O 0 i 

f 8 d c. b a',0 . 

, : -. 

(19) 

- 

The,-motion is stable if the determinant and the coef- 
ficients are positive. .This foym is somewhat simpler than 
the one used by Routh for numeric&l substitution but still 
involves considerable work*far equations above. the quartic. 

.-- 

Before a simpler method of following.stsbil.J.ty changes 
as the relations of a mechanical system are systematictilly 
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varied is presented, the form of the 'solution of the oqua- 
tions of motion mill be discussed in more detail. 

Form of the Sol.Ution 

When some of the values of hk to by substituted in 
equation (14) are complex (and therefore conjugate pairs 
since the coefficients of the o.riginal equation were real), 
there are pairs of-roots of the form a M-b. The part of 
the solution corresponding to these two roots can then be 
written 

x = e at (A,, cos -ot + A.al. sin bt > (20) 

The test functions of Routh and Hurnitz, when posi- 
tive, insure that a bo negative, so that the oscillation 
represented, decays with time. If a is zero', so that h 
is a zurc imaginary, the term ropresants an unending 08- 
cillation, which is the boundary condition bctvrcen stabil- 
ity and instability for the term. 

- 
The presence of puro imaginary terms is-.indicrted. by 

th-e fact that RouthIs diacrininant becomes zero. It should 
be noted, homeveT, that the discriminanf is also zero for 
more than one aair of equal pure imaginary roots and, when 
tl70 sets of roots are A,., = hz.4 = *ib, the motion is 
unstable, being of the form 

x = Al COB bt + Aa sin bt + Azt cos bt + A4t Etin bt 
cm 

Transition to Ilastability 

The fact that a pair of roots becomes pure imaginary 
as the system from which the equatiqn is derived passes 
from a stable to an unstable condition is made use of in 
determining the paint of critical .stability when some 
physical ch8ract.erisfic is varied systematically. 

Define the angular frequency s -- of a complete mechan- 
ical system of any number of degrees of freedom as the fre- 
quency at- which it can execute unending oscillation. Sim- 
ple systems of one degree 0-C freedom will oscillate endless- 
ly only in the absence .of damsing;but more complicated 
systems easily and sometimes annoyingly perform self-excited 
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oscillations in spite of a large amount of damping (refer- 
ences 18, 19). The expres.sions for natural frequency mill 
therefore be. established in their most general form, in- 
cluding damping. The most general case of unending oscfl- 
lation for the systems that can support more than one end- - 
less motion mill be considered as the case in which the 

._ 

corresponding equation has only one pair of imaginary roots. 

Expressions for Matural Frequency 

At the'boundary of 
* 

transitfon from stability to in- 
stability, it is knomn.that tvo of the roots of the equa- 
tion Ln h are tiw,. Either root can then be substi- 
tuted back into the original equation, the sum of ghe real I 
and the imaginary terms be equate& to zero, and tho reduced 
equations solved for the frequency. Performed in detail 
for the cubic equatfon, the process is as follows: 

ax3 + bxa + cx + d =.O 

-iawn 3 5 lNJJna + cs,ur, + d= 0 

2 
wn, 7 c/a 

% 
2 = d/b 

by.1 > 

(22.2) 

UnendSng oscillation is fndicated when numerical sub- 
stitution produces the same value of S2 f5ok both ex- 
pressions. It is evfdent' that this method is equivalent 
to setting Routh*s discriminant for--the cubic (bc - ad) 
equal to zero and,.. for this simple cas8, there 5s CO @In 
in simplicity by performing the operation in two parts. 

For the higher order equations, the pairs of expres- 
sions in w, are, when similarly o.bta,ined, 

.- 

QUASTIC wna = d/b 

4 
Wll = (cd - be >/ba ’ 

QUINTIC wna = (bc - af!/(dc - ad> 

(23.2) 

(24.1) 

4 
wn = (de - cf.)/(bc -. ad) (24.2) 
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sEX"LIC wn2 = ---= (bc ad)f - by 
(bc - ad)d -Y(be - af) 

(25.1) - 

WA4 - wb)-%2-+ (f/b) I 0 (25.2) 

(bc SEPTIC wn2 = -- 
- ad)(fg -. sh) - (bg - ah)2 

(bc - ad)(dg - ch) - (bg - ah)(be - af) 
(26.1) 

(bc - ad) u)n4 -4 (be - af) wn2 c (bg - ah) = 0 
(26.2) - 

The expressions were brought into the fern given by 
straightforward mathematical 'lJuggling.'l When a sfngle 
computation of the stability-of a mechanical system is de- 
sired, Hurwitz's determinant should be numerically expand- 
ed, ES this method mill be found simpler than the sevoral 
computations necessary to determine, by moane of the nst- 
Ural frequencies, whether the s2rstem is on the stable or 
unstable side of the critical point. 

When it Is desired to observe the transition from eta- 
bility to instability of a mechanical system, as when stud- 
ying the effects of control lag or inertia, the frequency 
method is much more convenient than that of either Etith 
or Hurwitz. In.addition, when the transition point has 
been determined by this method, the frequency of the end- 
less oscillation is at once available, without further 
computation. 

. . 

. 

Application to Scxtlc Equation 

An example of.%he application of the method to a 
practical case will now be borrowed from a later section 
of this report. It f8 dosired to learn within what rango 
of free natural-period a longitudinal control of a given 
sonsitivity will bo satisfactory, i.o., will not allow 
self-excited oscillation. 

The equation involved is a sextic. It has been de- 
termined by applying Routhfs discriminanf to the quartic 
equation for the airplane motion under ideal control that, 
the motion is stable when the natural period of the con- 
trol is inffnitely short (TN = 0). As soon as a finite 
natural period is admitted, the equation of motion becomes 
a sextic. In figure 2 the two expressions f-or natural ‘ 
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frequency and Bouth's discrfrninant.for the sextic have 
been calculated and plotted against increasing natural 
period of the control, .- 

___ 
By either method, the motion is seen to become unsta- 

ble when the free natural period of the control exceeds 
1.95 seconds, but the actual computations were much sim- 
pler for the frequency curves. The freauencv of the un- 
endfng oscillation is, by inspection, about 19 radians Rer 
second. It is interesting to.note that the freauencs of 
the sho.rt and heavtly damped oscillation of the ideally 
controlled airplane considered is 16.9 radians,per second. 

When the system is nearly critical, it fs possible to 
calculate the rate of growth or decay of the nearly end- 
less oscillation by a method of Blondel's (reference 20) 
whtch is based on the assumption that a in the root 
a-ib is so small that higher powers of a are negligible 
compared with a itself. The root is then substituted 
back into the original equation in A, and real and imag- 
inary terms are separately equated to zero, when solution 
can be made for a and b. 

AUTOKATIC CONTROL OF AIRPLANES 

LONGITUDINAL MOTION 

If the airplane is slfghtly disturbed 9n smooth air 
and allowed to execute free longitudinal motion, it will, 
if dynamically stable, regain a steady-flight condition as 
the disturbed motion decays t.n the form of two damped os- 
cillatjons. These tmo modes of oscillation consist of: 

1. A heavily damped oscillation of short period (of 
the order of a few seconds) involving primarily change of 
incidence, in which changes of forward velocity are negli- 
gible.; This motion disappears almost at once, and in most 
airslanes is not noticeable as an oscillation. 

2. A long period, lightly damped oscillation involv- 
ing change of forward speed, during which the airplane 
rises and falls. This oscillation depends on the drug of 
the airplane for its dampfng, and is increasingly trouble- 
some on "cleanlf airplanes. . . 

Although the short oscillation has been somewhat neg- 
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loct-od in stability analysis, because it disappears eo rapd * 
idly, Jones (reference 21) points,out.that, although the 
heavy damping of this mode insures its.rapid subaidenco in 
calm air, it imposes an effective restraint against move- 
ments of the airplane relative to the air and causes vio- 
lent movements of the airplano in, rough air. 

Lam of Operatinq.Control 

The controlling moment in longitudinal control-As 8x- 
erted by means of the elevators, which are then to bo moved 
according to some flight characteristic. Haus (reference 
22) :yives the following table of' disturbance detectors and 
the quantities to which each is sensitive. 

Instrument -- 

1. Air-speed indicator 

2. mind vane 

Recorded q --- uantity 

Relative speed . 

Incidence 

x. Froc q$roscope, sus- Absolute inclina- 
ponded at its c.g. tion 

4. Motor-driven gyro-. Angular velocity 
scope with precos- 
sional moment .- 

5. Pendulum or acceler- Direction of appar- 
ometer along OX ent gravity 

6. A.ccelarometer along Ma~nitude.ofappar-- 
02 eht gravity 

7. Lift indicator Mc,gnitude of lift 

a. Rate-of-climb meter. Speed along varti- 
CELL 

9. Torsional-accelerom- Angular accolera- , 
cter about OY tion 

Svmbol -L--- 

u 

-a = -n/u 

8 

9 

. -. 

‘ 

du/dt and 
sin6 ' 

da/dt and 
. - CO8 6 

iv9 or UK 

T?,or v sin 6 

. 

-. - 

B 

The olevntors ian bcmovod accordinq to the indicn- 
tions of .-ny of those instruments or combinations of thorn. 
The most successful controls, those of Sporry (referoncos 
23, 24, 25) and Smith (reforoncos 26, 2'7) are of type 3, 
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. operating according to the absolute, inclinationrof the nir- 
plan0 in space. This type'.mill'the-r~fore be considered in 
detail. Analysis of the other control types would bo car- .- 

a ried out in a mannor similartto 'the one nom prosonted. 2 

. : .._ 
Equations of Controlled Uotibn 

In its broadest form, the type. 3 cantrol possesses ve- 
'locity and acceleration -compcnen.ts. (types 4 and 9). A ge,n- - 
era1 solution including the Usplacement., the rate, and the 

. ' acceleration components is.no more difficult than that for 
the simple control; and.t&o‘.full form will therefore be -- 
considered. -- 

I The elevators are linked to the control through a 
servo mechanism, SO that the pit.ching~momont varies accord- 
ing to tb displacoment,cf.'t'hc control. For small motions, 
a linear relation can ba assumed and, for many controls, 
the assumption ail1 also be valid for large displacements. 

. 
. Since the control mechanism has inertia, an additional 

' d degree of freedom is introduced, and there are now four si- 
c multaneous equatfons of motion: 

X = m(h iq) (27) 
I Z = m(& - uqf (28), i = 

M = B;I (29) __ . .‘ 
F = m, . t * (30) 

where F is force on the control. 

m C’ effective inertia of the.Control referred 
to e. : 

. 

e 

t.3 displacement of the control. 

c 

c 

The ot?ler. symbols have'their usual significance. 

. The full expressions for horizontal and vertical force 
are as usual, but equations (29) and (30) are now 

. 
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(32) 
*r 

And, of course, [ g is the controlling moment 

corresponding to a control displacement [, and 6 a3 
3 

is t-he force tending to operate the control for an angular 
displacement of the airplane '6. The remainder of the de- 
rivatives signffy correspondfng linkages. 

Writing now the full determinant for the complementary 
solution where D is the .operator- d/dt, 

D - X, -4 -g 

'Zu D .- Z, -gY - DUO . 

1 -Mu -I,& Da - Dhiq 

0 

0 

0 
(33) 

Hf. 
-DaF'h-DF -IQ Da+D 

9 
-I-F 

t I 

It has been assumed that mos.t of the inertia of the 
control is effective after the three impulses have been 
combined to operate the elevators,. which Is equivalent to 
assuming that the error and the derivative controls have 
equal effectfve inertias and dampings. While experimental 
tests are required t-o determine the accuracy of this assump- 
tion, it is probably adequate for well-built controls, and 
controls could certainly be built for which it would hold 
exactly. 

Note that in equation (33) the minor c.onsist.ing of 
the first three rows and columns is the determinant for the 
UnCOntrOll8d airplane. Set the,nhole de(cerminant equal to 
zero for the complementary solution and expand it in tome 
of this principal third order minor. This procedure givr:s 

no + 
llL(D2~~ + DFq -I- P6) D - X, -X, _ 

Da c DF[ + Fe 
= 0 

-Z, D - Z, 

(34) 

This form can bt3 solved, but the final result will, be 
more advantageous if it is put inta.nondinensional form. 
Going ba-ck to expression ($3), write the dimensions of 
each term, 

. 
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. In terms of its dfmensions, the determfnant becomes 
. 

Tr -l 

T-l 

'f-lT-l 

0 

T.- l LT-= 0 

T-y LT-‘2 0 

L-1T-1 T -a L-IT2 

0 L!P T -2 

(351 

Following the same procedure as in nondimensionaliz- 
inq the uncontrolled motion of the airplane multiply the 
derivatives of .' 

the first row by T 

the socond'rom by T 

the third row by LT 

the fourth row by T 

the third column by L-IT 

the fourth column by T 

The characteristic length of the dfmensionless sys- 
tem is taken es L, the length of the tail moment arm. 
The characteristic tfme is defined by 

T = mXp/2 SU) (36) 

On this basis, the unit of velocity is 

LIT = u/ii (37) 

where .P = m/ (P/2 SL) (38) 

. . 

and P may be called the "rolatPve density" of the air- 
plane, being proportional to the mass and invorseiy pro- 
gortional to the cube of the linear dimensions of the ,&ir- 
plane. .Glauort notes (reference 28) that sgart from the. 
derivative coefficients 'of the airplane, cb is the only 
Saramctor which affects the stability. 

T- 
The dimensionless form of the dorivativos is as do- 
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fined by Metcalf (reference 29) and other writers, but it 
is necessary to.detsrmine the form of the control deriva- 
tives. 

In sassing, it should be noted.that another dimension- 
less system in use is based on the quantity p instead of 
P/2 5 as in the present paper* The mathematical expres- 
sions, however, are the same for both systems except for 
this one difference, and the numerical values of the deriv- 
atives differ only by a factor of 2. 

Control Derivatives 

It mill be shown later that, for the purpose of this 
analysis, it is only necessary to determine the ideal con- 
trol-derivatives " 

" . 
me,q,F 

The moment exerted by the tailplane is 

M= CL& p/2 U2L 

where 

%!t is tail lift coefficient. 

%* tail area. 

u, steady-flight airplane velocity. 

L, tail moment arm. 

Let 6, elevator angle. 

l?ollominq the method of Kopgen (reference 30 
dimonsionalizing the control derivatives, write 

(401 l 

> i n non- 

(41) 

where 
ai” is obtained from windetunnel data, and 

depends 'on the control-coupling ratios and sqnsitiqity. 
Then 

?&T2 = (W/X3) (I/BIT" = i.Lrng (42 > 
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I 

. 

. 

2 and B=QmL, ahere 'Q. is the 'Imabs.dfstribution fac- 
tor" (reference 29) so that 

Similarly 

M (4.C T = mqc 

(43) 

(44) 

this factor is written mqc 
to distinguish it from the 

natural m, of the airplane. Finally 

(45) 

Tho fg9 ft t and mg derivatives can be obtained in 

a similar manner, when ft is desired to evaluate them in 
any particular problem. 

The Dimensionless Dctorminsnt 

9he dimensionless form 0.f the determinant becomes 

D - Xu -X w . -P CL 0 

-%l D- zw +(CLY+D) 0 

-mu '% Da-Dmq mt 

0 0 -DePi-Dfq-fe DQpfE y-fe 

and equation (34) becomes 

: -- 

(46 > 

A0 -I- m 
Da 9 

t 
f" f Df + fg D -XII -xm 

-2 -I- D4' -I- f[ 
=: 0 

‘%I D - zi 
(47) 

Call the second minor A,. Divide the nume.Sator 
and denominator of its multiplier by fe. Then 
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NOW 

so that 

similarly 
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(48) 
Q, = ---- Ds/f9 + Df$ft -I- 1 

bf6 = -. - -. 

f6 . 
m61 = m[ fb (49 > 

The subscript indicates that ~-t has not been oxtract- 
ea. This extraition could be very easily accompllshed by 
proper evaluation of the other coefficients, such as making 
PJ mt t,ako the place of mt. 

The numerator of equation (48) can now bo written in 
terms of the ideal control dorivativcs, that is, tho vnl- 
ucs mhich the control derivatives would have if there were 
no lag in the control. That is, 

(D2fg' + Dfq + cLf6) = Dsmg + Dmqc + P me &I, 

Equation (48) can then be written as folloms: 

00 - A,(D2~g+Dmq~c+~m6) + A, q+ $) = 0 (51) 

. 

. 
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hi?aq: back 'to equation (32), the control forces sum 
as 

(52) 
. . 

and, vhen the error impulses are zero, the equation for 
the control alone is 

(53) 

- 
Com-osre this form with equation (5) for a generalized 

system of one degree of freedom. 

(54) 

so that the B derfvatives can be nritton in terms of the 
natural frequency and tho damping of the isolntcd control. 
That is, 

Ft = wn2 '= (2n/T,)" 

FE' = 
!i 

25 wn = -?C (2T/Tn) ' 

(55) 

(56) 

iTom 4 = Ft Ta-; whore T is the characteristfc 
time of the airplane, and similarly 

so tklon :. 
-- ._ 

fi = (OTT T/T,)’ (57) 

fH 
= 2t (21-r T'/Tn) (58) 

This form is convenient because T, and. !t for tho 
iaolatcd control can bo 0bttlinOa by sfmglo aynamic test6 
in the laboratory. 

Substituting these -sa'lues into equation (51) gfves 
r 

Ao-A1(D"m +Dm g,i-brn,).-!- A, D"(Tn/2nT)2 %2c(Tn/21~1)D I = 0 

(59 1. . . 
. . 
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This divisfon into three major terms is very conven- 
ient. If the control is nearly ideal, T, is very small 
compared with T, and the quantity in the last bracket 
can be neglected, giving the equation for the ideally con- 
trolled afrplane. If the airplane is uncontrolled, the 
second term is zero, leaving the original determinant for 
the uncontrolled motion. 

Although it has no't been so noted, during the nondi- 
mensionalfzing, the operator D was replaced by the di- 
mensionless operator DT, which was also written as D. 

Effect of Ideal Control 

Equation (59)is the complete form of the determinant 
for controlled longitudinal motion, an abridged form of 
which, neglecting the derivative compon-ents and control 
inertia, 1s given by Klemin (reference 3). 

Th-e effect of an ideal control on the period and the 
damping of the oscillation will first be dotermined. Ae- 

suminq that Tn/ Ip is sufficiently small so that the third 
term can be neglected, the first t$o terms of tho equation 
can be expanded into the form, 

aD * -I- bD3 f cDe -E dD + e = 0 (60) 

Write f = 1 - mp 

mql =m q + mqc 

where a m q is the natural damping in pitch of the airplane, 
and mqc is the effective damping in pitch added by the 
first derivative component of the control. 

It is necessary here to difforentiato betmeon the ef- 
fect of mq and of ,mqc on the motion. Their offoct in 

damping an o.scillation once begun is equivalent. However, 
mq is derived from the relative motion of the air and the 
tail surface primarily, whereas mqc is derived-by taking 
mechanically the first derivative of the angle of pitch 
snd usinq it to operate the elevators. Consequently, an 
airplane with large natural mq may be expected to exe- 
Cute violent motion in rough air, in consequence of the re- 
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straint against motion relatfve to the gusts. On the other 
hand, an airplane heavily d.amDed in pitch by means of the 
derivative control is restrained not relative to the air 
but to a set of fixed axes in space, determined by the 
gyros. 

Protection from gusts, as far as the rotary damping 
is concerned, would then consist of replacement of the nat- 
ural damping by artificial damning relative to space axes, 
as far as possible, tvith the limitation that the airplane 
must still be controllable manually in the event of fail- 
ure of the automatic piiot. 

Returning tc equation (60), the coefficients are 

a=f 

b = 'f(xu+zw> - mq1 

C = f(xuzw-iazu) + mql(xu+zw> - pm, - wvj 

8 = -GLm, ( zu-xu 6) - CLp~(x,6-z,) - wmgCxuzm-xwzu> 

(61) 
The effect of mqc. upon the damping and the period 

is eqactly the same as the effect of mq, and so it.'rrill. 
be sufficient to note here that increasing the sensitivity 
of this component of the control will, over the‘normal- 
flight range, increase the damping end lengthon the period. 

f 
It .is interesting to note that by making. rnz = 1.00, 

can be made zero. This nethod is equivalent to giving 
the airplane' zero inertia in pitch. The quartic equation 

'than reduces to a-cubic. 

As the mg .contr.ol is the most widely used, it will 
be considered first. 

Effect of Simple Displacement Control 

Let rnz = mqc = 0. Let the coefficients of the quar- 
tic roprescnted by A, be ao; b,, co, do, eOb Then the 
effect of adding the mg derivative is to increase these . 
coefficients so that 



24 N.A.C.A. Technical Note No. 7'00 

. &=a0 

b = 30 

I 

. 

C = co - Pm6 

a = a, + lam6(xu + zw> 

8 = e,o - me (xuzw - xmzu ) (52) 

The effect of sma'l1 values of mg on the long and 
the short oscillation has been calculated for two typical 
airplanes. Afrplane 1. is the transport considered by 
Metcalf (reference 29) and Airplane 2 is a small 60-horse- 
power Darasol monoplane treated by Soul& and Wheatloy (ref- 
erence 31). 

Tiquro 3 gives the variation nfth m6 of the period 
and the damping of the long oscillation. The effect of 
m6 on the short oscillation in the range plotted is given 
by the foll.oming table for Airplane 2. 

me Teriod 

(sec. > 

Time to damp to 
& amplitude 

(sec. > 

0 4TO7 1.08 

-.20 3.39 1.19 

-.50 2.89 -1.40 

The effect of me on the short oscillation is not 
very great.. The period is shortenea, as might be expected, 
since me is a spring constant in pitch. The long oscil- 
lation shortens brlefly and then, as its damping increases, 
lengthens its period, and finally becomes a pair of simple 
subsidences, 

WTZth complete restraint in pitch 
equation in D 

(rns inffnite), the 
reduce-s to 

D? 
xu Zll 

- (%+z, > D + = 0 
xw Zw 

(63) 



N.AbC.A. Technical Note No- 700 25 

The success of the sfmzle displacement control in 
practice is explained by the tremendous increase in the 
damping of the long oscillation. .The time to damp to Q 
amplitude can,. 
to 2 socon;ls. 

in the case con.sidcrod, be reduced from 20 
For an ideal control, then, both the long 

and the short oscillation would disappear almost at once 
after a disturbance. 

iioreover, the values of mg -used in the foregoing 
example have beor extremely conservative, 
once 31, 

Rlemin (rcfor- 
invostfcating this type of control, presents 

Mg = - 2,160 as a practical value for the airplane he con- 
siders and, in dimensionloss form, this value 2s oqufvslont 
to me=-900, approximately. Klemin finds, in conse- 
quoncc, that the long oscillation disa?peara completely and 
is replaced by a pair of subsidences. 

It should be understood that the control does not cre- 
ate any new damping. It sfmzly makes a more economical 
use of the damping that is already available in the system. 
The poor distribution of damping betsoon the two oscilla- 
tions is well known and the mg control may be consfderod 
as a sort of equalizing valve, which allows some of the 
damping of the short oscillntLon to flow into the long OS- 
cillation. The simple displacement control 13 allowed, 
therefore, by the peculiar or~ginnl cohdition of the ays- 
ten, to produce an affect com~srablo with that of an error 
and derivative control, Needless to say, this fact is hfgh- 
ly cdvantngeous.from considerations of mechanical simplicity 
of the control. . . _... 

Use of the Accoloration Gomgonant 

The controlling monant can also be nada to dapond on 
the socond dorivativo of the angular displacomant, which 
fs oquivalont to incrcasfng or docreasing the offoctivo . 
inortis about the latorcl axis of the airplane. 

The inertia mfght be increased (m; negative) to re- 
duce the initial pitching acceleration under the influence 
of pusts, or ft might-be decreased to permit a more rabid 
dampin? of the subsequent'motion. Simple increase of thd 
affactlva -inertia will not bo ordinarily tolarstod, honav- 
or, bccauso of' its u$fsvorabio offoct on tho stability of 
the motion. 
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Now supp'oso a positivo value of rng woro chosen. A 
simple form results if mp is taken as 1.00, as this 
choice provides that the airplane have zero eff.ective in- 
ertia in nitch. The coefffcients of the reduced equation 
then-bear the relation to the original equatiom.t-hat 

a = 0 

b =mq1. 

c = co - (xuzw-xwzu) = very nearly co 

d = do 

8 = 00 

A few trial calculations show that mg affects the 
short oscillation almost exclusively, mhioh might be ex- 
petted on noting that only the first two coefficients are 
greatly changed by m&. A very good approximate factoriza- 
tion, since b is large., is 

(D + b) CD2 f (bc - d)/b' D -I- d/b) = 0 (64) 

and the short'oscillatfon becomes a.heavily damped subsid- 
enc.e , with the long,oscillation practically unchanged. 9ut 
the short oscillation *as already satisfactorily well 
dampod. Therefore, the use of a positive accclorstion com- 
ponent of the co'ntrol does not soom to be justified, and 
the introduction of a negative rnx component would bo sat- 
isfactory only if it 3orc selective, operating only to Op- 
pose movement away from equilibrium. 

Introduction of Control Lag 

Actual controls frbquently exhibit a fast residual os- 
cillation, which one Triter (reference 27) describes as the 
effect of the control trying to act upon the short oscilla- 
tion. More exactly, this new oscillation is probably 
caused by the additional degree of freedom supplied by the 
control, and,certafnly depends on control inertia. 

In order to investigate the nature of this residual 
oscillation, the full form of equation (59) will nom be 
used, except th,at the two derivative drives Will be neg- . 
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lected, because they a,re not at-present Sncarporated in 
the Sperry or the Smith control&. The equation is then 

!- 
*o - AI we + A0 

t 
D" ( Tn/2~T l2 -t- (65) 

Let - ^ . . 
i r = T /T!2u (66) 

Let the coefficients of fIo :be 'ao, b,, co, do, e. 
and the coefficisnts of A,, (the ideally controlled de- 
terminant) 'be aI, b,, cl, d,, ey. * 

Then, wrIti&g eqtition (65) 'as the Sextic . 

'.aD' + $'$ r&D* f dD3 + eD$ f fD -I- g = 0 ;. (69 
. .. -. 

the coefFiciients.of,.the.sext5.c: ar-e,.fn terms:oP.the .coef, 
ficie.nts,.of the, ideally contr.ollsd.and, tge uncontrolled 

. motion, '- 
. , 

' -' *. '-. - : r 
I .I '*. . . . . . . . . ._ 

'I, ; a-5. :r 2 :: :: :. 
..' .:.. 

b= 25,r + r2bo ' -- 
_I _ 

. . 

C = 1 +.2Crb, f ra.co 

. . d = b, +' 2lrc, -I- r2do 

e = cl + 2{rd, + r2eo- 

g = e1 -- (68') 

The effect of increasing the natural period and the 
damping of a cpntrol for a given ,airplane and a given stat- 
5.c linkage . ,m6 C&I therefore be carried,through in an or- 
derly nann'er by.the use of the relgtions given in equa-. 
tions (68). Thfs'Drocedure has been carried out for a typ- 
ical cas,e,. .. ., 

. 

One of' the 'ideal cases 'treat,.ed.mas 
This case has been extended 

for. mg = - 0.50. 
io include control inertia and 

dampang. '. ,.Tt ..is-.very' easy to write..down t.he sextic* but 
its solution is not an enjoyable task, although there are 

- 
.- 
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m-ethods of acc6fiplishing the.solution. It is much easfer 
simply to. determine the effect on the stability of the mo- 
tion of allowing the control inertia to become finite. 

Effect of-Inertia Lag on Stability 

The simple quartic for the uncontrolled motion was 

D* f 4.20 D3 f 11.96 Da + 1.94 D +- 1.30. = 0 

and when mg = ~0.50, this expressioi-becomes 

D* + 4.20 D3 -I- 20.96 D2 +- 19.40 D -I- 7.7'0 = 0 

This equation is for the airplane of reference 31, 
and the derivatives were based on p instead of P/2- 
The damBing ratio of the control was held constant at 
5 = 0.20 while the natural period Tn .vas increased from 
zero. The stability changes mere follomod by both Routh's 
discriminant for the sextic, and. the use of the simultana- 
ous equations in natural frequency. The results have al- 
ready been given in figure 2. The airplane becomes un- 
stable mhcn tho natural period of tho control oxceods 1.94 
seconds. 

. 

. 
l 

Effect of Damping, in the Control 

In order to determine the effect of control danpfng 
on stability, the definitely unstable case of Tn = 2.40 
seconds was reconsidered with the-damping ratio of the 
control increased to 1.00, that is, critical dampfng. 
RouthIs discriminant then became positive and equal to 
1,275. Increasing the damping then restores stability or, 
in other words, postpones the critical point of nouGra1 
stability. 

Although it may seem contrary to common sense to im- 
prove the stability by making the control act less rapid- 
ly, it nil1 bo remomborod that the uncontrolled airplano 
was stable, and adding an infinite amount of damping to 
the control can do no Torso than rostoro it to this etato. 
If the airplane mere originally unstable, dumping might 
eventually have an adverse effect. 

As in the constant-speed control, where tho effect 
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has been discussed in detail (reference 32), damping in 
the control allows the initial surge error to be somenhat 
larger on account of the sluggfshness of the control, but 
successive error surges are reduc'ed because the tendency 
of the control to overshoot has been curbed. 

Damping is not completely beneficial, but it can com- 
pensate for the worst property of'controls, which is.iner- 
tfa lag, Stability of the motion is attained by damping; 
good performance is attained by reducfng control inertia. 

. . 

Solution of.the Critical Case . 

Vhen the natural period of the control.is 1'.94. sec- 
onds, the motion becomes critically stable, and an unend- 
ing oscillation is present. From the intersection of the 
two curves for the frequency,..the frequency of this oscilla- 
tion is wn2 = 19. TWO of the roots of tho sextic aro then 
known, and tho sextic can be factored into 

(D2 + 19) (D4 f 6.45D3 + 35D' -I- 3-7D + 15) = 0 

The quartic can be solved by Zimnorman!s method 

(De + 19) (Da +- 1,2OD c 0.52) (Da -I- 4.25D f 28.8).= 0 

Compare this with the factorization for the idoal con- 
trolled airFlano mith no control inartia 

(Da + 1.15D + 0.455) (Da -I- 3,05D -I- 16.9) = 0 

The long oscillation has hardly been affected. It 
seems justifiable, then, to obtain a rough factorization 
of the sextic in any 'case below the.critical by dividing 
throuqh,by the quadratic factor of the ideal.quartic, which 
corresponds to the long oscillation. , . 

The short oscillation is also not greatly modified. 
It is the new, or%esiduaill oscillation introduced by the 
control that becomes unstable. Because of the chnraateris- 
tics of the linkages, the residual oscillation apparently. . 
becomes unstable when its period approaches that of.the 
short oscillation. 

The period of the residual oscillation shortens and 
i.fs damping improves as.the inertia of the control is re- 
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ducod; the oscillation vanishos complotoly for an ideal 
control. . 

Determination of Control Trequency and Damping 

The convenience of the representation of the control 
as a single degree of'frcedom systom is seen when the lab- 
oratory procedure necessary to obtain T,, t, and me is 
outlined. The complete control, with dummy control sur- 
faces suitably weighted to represent their equivalent in- 
ertia.in flight, is mounted on a test platform so that it 
can be easily rotated (in pitch for a longitudinal con- 
trol). The platform is given a very sudden change in in- 
clination, and the response of the control is recorded by 
means of a pencil or equivalent recording means, attached 
to an output memmber, such as a control. push rod of the 
mechanism. From the record, which may show a damped oscil- 
lation or an aperiodic aggroach to the nom position, the 
damping ratio‘and the natural frequency of tho control can 
be determined by elementary vibration formulas. 

The ideal control derivative me is dotermin.ed by 
noting the stoady-state control angle for a given angular 
displacement of the disturbance indicator of the control. 
Given this ratio, me is determined-from equation (43). 

Only three quantities are required, and they are the 
' three that express the effect of the control on the motion 

of the airplane. Therefore, they also serve as conven- 
ient means of comparing one control against another of the 
same type; . 

Methods of obtaining advantageous values of the three 
_oarametsrs remain in the province of detailed control de- 
sign, but the Durameters offer a moans of dotermining the 
suitability of .an oxisting control for a particular air- 
plane. -. 

Suppression of Disturbances in Gusts 

Insuring a rapid docadence. of motions once begun is 
only half the job of a successful automatic control. Tha 
other half.consfsts of tho.rcduction of indtial error 
surges from tha dosircd course, as the airplane oncounters 
an oxtcrnal disturbance. 

The magnitude o-f the surge error can be investigated 
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with the aid of operational calculus.or by means'of mechan- 
ieal methods of solution; suah ae the differential analyzer. 

The initial acce&eration of the airplane under the in- 
fluence of various kinds of gust can be written for each 
of the three degrees of freedom as follows, 

Gust .--- 
Initial 

acceleration 

Vertical - m, 

L 

xWwO 

zWwO 

mww 0 

Head or Tail - u. xu"o 

zu"o 

mu"o 

Rotary gust - q, xqqo 

zqqo 

mqqo 

*These two are,negligible. 

Derivative 
depends on - - - 

Induced drag 

,Aspect ratio 

Static stability 

Total drag 

Lift 

Power application 

Tail size and effi- 
ciency 

In,order to reduce 'the effect of the gust in any case, 
the corresponding derivative should be made small, If the 
derivative is zero, the airplane mill not be affected by a 
gust in that sense. Because the motions in each dogreo of 
freedom are related, however, an airplane with, say, mu = 
zero &da develop a pitckting motion in response to a head 
gust f but the original forcing function would be applied 
only as a vertical and a horizontal forao. 

The only derivatives that can be modified approaiably 
by the dosigner are the static stability m, and the damp- 
ing 

"8' 
Exporimontal.data (reference 33) indicate that; 

in qcn ral, airplanes with short period and heavy damping 
do the most Ditching in rough air, corresponding roughly to 
large mm and large mq. 
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The initial accelerations of the afrplane represented 
bY mWwO and mqqo can then be reduced, and tho stabil- 
ity of the afrplane mill not bo impaired if-the reduced 
derivatives are augmented by rug and 
an automatic pilot. The value of me :aCi10~=Ez2L, 
equivalent to mw but has a similar effect, being, in fact, 
a much more desirable derivative as it allows a more sat- 
isfactory distribution of damping, both mq and mqcr be- 
tween the two oscillations. 

Systematic computations by Haus (reference 34) shows 
that, even in the absence of the automatic pilot, reduc- 
tion of m, reduces the violence of the motion. 

Unfortunately, little can be done to reduce the ini- 
tial response of the airplane to a vertical gust. Fcr 
the first second or 80, the motion is given very cloeoly 
by 

m/w0 = 1 - e Q/T (69) I -- 

and *TV 9 depending on aspect rati@, cannot be reduced ag- 
preciably. This situation miqht have been foreseen for, 
if the air supporting the airplane rises, the airplane it- 
self must modify its course in space. 

. 

-. 

Once started, however, the disturbed motion can be 
made to disappear much more racidly with the aid of nn au- 
tomatic pilot, as Klemin has shown (reference 3) by a num- 
ber of calculations. Klemin also shows that tha vertical 
motion in response to a head e;ust is very much eased by an 
me control. Vilson, in an early pacer ‘on the offoct of 
gusts (reference 351, also indicated the' bonoficial effects 
of o comsletc constraint in pitch. .- .- 

Conclusions 

On the basis of the material prosonted, soma ganoral 
conclusions can ba drawn concerning the operation of a con- 
trol sonsitivo to the angle of ?itch and its dorivativos. 
In tho absence of complete ex~erimonta.1 data, tha conclu- 
sions must be prssonted with the reservation that, while 
they satisfy available data, vary little data arc available. 

1. Tha control with qyroscopic roforencos qivos tho 
airplane sonsitivity with respect to axes fixod in space. 
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2. The simple pitcb~control readjusts the propor- 
tions of the system, 'so that the available damping is more 
equally distributed,betmeen the long and the short oscil- 
lation, with the result that the long,oscillation can be 
made to disappear aa rapidlg.as the short oscillation and 
to take on the form of two simple su%sidencos. 

3. 
pitch, 

The benefit of the simple partial restraint in 
therefore, is derived from the ability of the dfs- 

plncoment coafrol .to act as an equivalent rate control. 
. 

4. The additfon of an actual rate control increases 
the damping in pitch (mq) of the airplane, without in- 
cransing the sdnsitivfty (q mq) to a rdtary gust. 

5. Shore is no .advantaga in using an unsolectiva 
second derivative control an& not much advantage in using 
a selective control. -.: 

6. Inertia 'in 'the control introduces a third oscilla- 
tion which can be mistaken for the short oscillation rvhen 
it becomes troublesqme. I. 

7. The third oscillation becomes unstable mhen the 
inertia of the control is increased beycnd a critical value' 
determined by the airplane chargcterisiias and the control 
damping ratio. 

. . 
8. Damping in the control reduces the effactivonoss 

of the control, but stabilizes the residual oscillation. 

‘9. 'Flight i'n‘rough air nil1 be impeovod cgreator 
course stab$lj.ty> by reducing the static Stability (m,> 
and the'natural damping in pftch cm,>, and by adding an 
automatzc control to supgly sensitivity to angle of pS;tch 
Cm,) and absolute damping in pitch (m,,>. 

GONTBOLLED LATERAL IdOTION 

The lateral motion of the airplane fs,r small disturb- 
ances consists of translation along the Y axis (sideslip) 
and rotations about the X and 2 axes (rolling an'd yawing). 
The uncontrolled motion is represented by an equation of 
the fifth degree, of mhich oae'af .the roots ts zero, signi- 

%fying.that the airal-e is insensitive to direction in az-, 
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imuth, In the remaining quartlc, one of the rdots is very 
large compared -with the remaining three, and is very near- 
ly equal to the damping tn roll. .-That is to say, the re- 
sistance of th-e airplane to,rat-e of roll is. so large that 
the rolling'subsidence proservos its charactor in spite of 
tho othor lateral motions of the airplano. The rolling 
motion disa-ppoars almost at once in normal flight and may 
give trouble.only'at the stall. 

Of-the remaining throc.roots, two aro conjugate com- 
plox and one is real, dofining an oscillation and a subaid- 
ende (or divergence). The only afrplane'characteristics 
influencing the roots at the disposal of the-designer are 
the amount of dihedral and the amount of fin and rudder 
area. Generally speaking, a l&rge amount of static sta- 
bflity causes the real root to become negative (spiral in- 
stability) while cqn DXCOSS of negative static stability 
beyond a smalL.minimum value mill cause the oscillation to 
become first of increasing magnitude and then to separate 

. into a rapidly increasing exganential mode (reference 36). 

Controlled Lateral ?jotion 

The.later,al motion is controlled by the rudder about 
the. yami.ng axis and by the ailerons about the rolling axis. 
The ailerons, as a rule, in addition to exerting a rolling 
moment, will also apply a yawing moment, usually of oppod 
site sign to the direction of the de-sired turn and of tho 
order of a tenth t-he rolling momcat. 

The rudder.control, if actuated by azimuth fndica- 
tions, makes up for the natural deficiency of the airplane 
in azimuth. But the provision of a sense of direction 
does not guarantee adequate damping of the motion. The . 
use of nn angle of ydm control is in this res?act not go 
fortunate as the addition of an angle of'pitch control for 
tho longitudinal motion. The rolling subsidonco remains 
vary ragid, the original short-period oscillation is sen- 
sibly unchanged (reference'6),: but. the slow spiral diver- 
gence or subsidence formerly present has now become a lonq- 
period banking and yamfng oscillation which may be poorly 
damped and which depends on the dihedral of the airplane 
for the regulation of its period, of the order of 15 to 20 
seconds (reference 27). 

The motion can be modified by operating the rudder or 
the ailerons according to other characteristics of the mo- 
tion. 

. 
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. 

c 

c 

Law of Operating Control 

Haus (reference 37) has given the following table of 
disturbance detectors, according to the indications of 
which the ailerons or rudder can be operated. 

1. 

2. 

3. 

4. 

5. 

6. 

798 

9. 

&nstrum& 

Vane with vertical 
axis 

Free gyroscope 

Free gyroscope 

Gyroscope produc- 
ing precessional 
couple - - 

Gyroscope, or dff- 
feronce in lfn- 
ear speed of wing 
tips 

Pendulum fn ZOY 
plane, or acceier- 
omotcr along 'OY 

Torsfonal accoler- 
omoters about 
XandZaxes 

Compass . . 

It may be stated as 

&corded ouantitg 

Angle of sideslip 

Symbol 

k/U 

Yaw with respect to 
axes fixed in 
space . 

Roll with respect to v 
axes fixed in 
space 

--- 
Angular velocity of P 

rolling - 

Angular velocity of .r 
yawing . 

-. 

Direction of appar- g sin cp 
ent gravity +dv/dt+Vr 

Angular accolera- 
tion about OX and 
oz 

-- 
;,s 

Yam with respect to 
earth's magnetj.c 
ffeld 

---If - 

fundamontal that the prfmary pur- 
pass of the lateral cotitrol is to give the airplane Senif- 
tivity in azimuth. In this respect, it differs from the 
longitudinal control that operated to improve course sta- 
bility already present. Secondary control components are 
then used to improve the resulting motion. 
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The Sperry control operates the ailerons accordfng to . 
angle of bank to improve the motion, and the Smith control 
employs both aileron and a component of rudder motion pro- 
portional to angle of bank. The Askania control moves the 
rudder according to both angle and rate of yaw* Garner 
has shown (ref.erence 6) that all these secondary controls 
affect the damping of the oscillations. The rate of yam 
control, however, affects the short oscillation almost ex- 
clusively instead of the long-period llcoursell oscillation 
which it -was intended to improve. The aileron controls 
fmprove the motion by modifying the distribution of damp- 
ing although they are simple displacement controls. 

Lag in the Control 

There are two separate controls, as a rule, for the 
rudder and the ailerons. Consequently, two additional 
equations of-motion are introduced, one for each new de-. 
gree of freedom, and the determination of the complete mo- 
tion vi.11 require the solution of a ninth-order equation. 

It is possible that the highest order terms may be 
neglected, or that lag in the aileron control may ba nog- 
loctod compared with lag in the rudder control, because of 
the much greater damping in roll than in yaw. Sufficient 
calculations are not yet available, however, to endorse 
such simplifications. 

Following the method of introducing control inertia 
and damping that was treated in detail under longitudinal 
control, the complete equations of controlled lateral mo- 
tion will now be presented, for an airplane with rudder 
and ailerons moved according to angles and.first and sec- 
ond derivatives of yaw and roll. This arrangement is 
analogous to the control provided by the Sperry Gyropilot, 
except for the addition of the derivative components. 
Controls using,other laws of operation can be similarly 
analyzed. 

Equations of Motion 

For simplicity, the airplane will. be considered fn 
level flight--so that e. = 0, and the product cf inertia 
E mill be considorcd small enough to be neglected. The 
equations of lateral motion are thon 

t 
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Y = m(dv/dt+Ur) (70) 

L = A tip/at (711 1 
N =Gdr/dt (72) 

There Y is lateral force, L is rolling moment, and 
N is yavfnq moment. 

There are tmo separate controla, one for the ailoro.ns, 
and one f or the rudder. Let . 

F, force on aileron control. 

T, force on rudder control. 

L displacement of aileron control. 

Q, displacement of ruddor control. 

Force derivatives for the controls are obtninod in the 
same mannor as force and momont derivatives for the air- 
plane.. Thus, 1 

Ft = (l/m control ) (a_F/af ) etc. 
I (73) 

Then the free motioc of oath control, vith no forc- 
ing function or oxtornnl force acting can be ivrittcn as 

Aileron control (De + DFE -t- FE> e = 0 - (74) 
. 

Rudder control (Ds t- DTt + !T!q)rrq = 0 (75) 

Tilese two equations define the natural period and 
the damping of each control. - 

The full set of simultaneous equations for the con- 
plementary solution of the motinn of the controlled air- 
plane is qfven by 

Side force 

(D-Y,) v + (-Yg) cp + (DU) 9 f 0 + 0 

Rolling moment 

(-Lv v + (3--DLp)cp -r- (-DL,)'b + (-Ls b 

= o - (76) 

>oo. (771 
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Yawing moment 

(-N,)v + (-DN~)Q~ +(D'-D~)\L+(-N@ + (-q)q = 0 

Aileron control force 

0 + (-D%$,-DB p-~q)~+ 0 + (D~+DF~+~ + 0 = 0 

Rudd-er control force 

0 -F 0 + (-D'~~DI, -T$)* f 0 + (D~+DT~+T~)~ = 0 

(78) 

(79 1 

030) 

Dfm-ensions of Determinant 

It is again desired to have the derivatives dimen- 
sionless. The dimonsions of-t90 determinant resulting 
from the foregoing equations are 

T-l LT-a LT-s 0, 0 

L-IT-1 T -2 T-2 L-11f-2 0 
. r-1 -2 Y T p ~-2% L-1T-2 L-IT-a 

0 LF2 o- ..T-a 0 

0 0 LF2 0 cl-2 L (80 

In order to make this exprassios dimensionless, mul- 
tiply 

the first line by T 

the second and third lines by TL 

the second and third columns by VJ 

the fourth row and column by T 

the fifth row and column by I! 

The unit of time is again I! = m/(p/2 SU>, but the 
unit of length according to Koppen.'.s notat1o.n is tha niaq 
semispan (b/2 > l 

; 
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Expansion of the Determinant _. 
As in the longitudinal case, the determinant can be 

expanded in terms of ideal control derivatives and the 
control frequencies and the dampipg ratios, so that it 
will not be necessary here to evaluate the coupling terms 
Lt, Ne, xv, etc. 

Certain minors of the full defermfnant wfll be used 
SufficientLy often to justify a general symbol. Let the 
dimensionless determinant for the uncontrolled airplane 
be A,. Then 

d - Y, P. CL W 

A, = - t, da - d'cg -dZ, (82) 

- ?, -dn P I aa - dnr 

Also let 

A, = d - Yv dv 

-n v da - dn, 

A, = 
d - Yv w CL 

-7, v da - dtp 

Now also assume the shorthand notation that 

IfF = 
/Da I+, + DLpc + 1, 

-mm 
Da(Tna/2nTJa + D~~,(!I?,,/~TTT) f 1 

nqF = 

Da nc -I- Dnpc f nrp 
-- 

;=(1,,/2nT)= 
--- 

+ D21a(Tna/2nTf -I- 1 

(84) 

(85) 

(86) 

. 

(87) 

- 
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D 2 ng.+ Dnrc -I- nJI nvT = I_- --111__ -- 
Da(Tnl/2nT)a + D2i1(Tn1/2nT) + I 

(88) 

Hate that, if the yawing moment of the ailerons is 
assumed to be proportional to the rolling momont over tho 
normal ranga of aileron angles, 

Y’E = k .ttF (89) 

where k is a constant of proportionality. 

In Corms of these minors and fractions, the fifth- 
order dotorminant can now be expanded into a form more 
convoniont for treatment. 

Expandod Form of the Datorminant 

The expansion is of the form 

uncontrolled 
airplane com- 

+aileron yaw 
component 

+ aileron roll 
component f rudder yaw + 

component 
ponent 

, 

T - 

rudder yaw 
+ aileron roll 

side force =o (90) 
component 

TFritten symbolically,.this equation becomes 

‘0 + nfF '1 - $j' *a - nqT o‘, + nnT 'Z&D-yv) = 0 (91) 

It is interesting to 'noto that, mhon tho rudder is 
moved according to tho angle of roll, the effect corro- 
spends to the yarning action of the aillerons and is thero- 
fore included in the second term of equation (91). Thus, 
ruddor movomont according to this relation can bo mado to 
balsnco exactly tho adverse yawing moment of the ailarons. 
Tho operation is ono that human pilots perform instfnctivo- 
ly. 

. 
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. 

Effect of Ideal Controls 

It is fnteresting to compare the effects of the var- 
ious components of control outlined in the foregoing on 
the motion of the airplane. If the simple dfsplacement 
controls of the rudder and ailerons are perfectly quick 
and Dowerful, the airplane is completely restrained in roll 
and yaw, and equation (91) reduces to simply 

D - y, = 0 (92) 

wh$ch denotes a subsidence in sidosiip, determined by the 
sfdo force produced by sideslfpping.. 

'The uncantrol'J.ed motion is represented by the deter- 
minant A0 which, when expanded, gives an equation of the 
form 

. D" + bD* + cD3 -I- dD %eD=O. '(93 1 

The effect of the control derivatives is to increase or 
decrease these coefficients or to raise them to higher pow- 
ers of D. Suppose, first, that the controls are ideal, 
and that they are simple displacement controls with no de- 
rivative components. Then the additions to the coefff- 
cients can be tabulated. 

Add to 
cdeffi- 
cient 

b 

= . 

d 

8 

f . 

ludder mo- 
gent pro- 
?ortional 
to yaw 

0 

Iudder moment 
?roporCional 
;o angle of " 
lank . _ 

0 

Aileron .yaw- 
ing moment 
proportional, 
to angle of 
bank 

0 

0 ' 

-W+&> 

Pncp (Zr Yv*CL& ) 

0 

/ 

Aileron rolling 
moment propor- 
tional to an- 
gle of bank 

(94) . 

When both rudder displacenent'proport~ional to yaw and ai- 
leron displacement proport%onal to angle of bank are pres- 
ent, there is an addftional cross-product term- 
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Discussion -_ 

. 

. 

In.order that there be course stability, f must be 
greator than zero, If a rudder control is used alone, 
then for f to be positive Z must bo greater than sore 
numerically (negative in this zyatem of units: Z, is the 
derivative -depending on dihedral and with IV 
negative dihedral.), 

zero (slight 
the pilot -cannot maintain course sta- 

bility without the aid of the ailerons. Addition of the 
simple aileron control adds a term from (95) groportional 
to Y,, the side force in sidoslip, and this term in- 
creases the course static stability. 

If f mere zero, 0 would determina the spiral ata- 
bility of the airplane. For.most airplanes, e 
tive, 

is nega- 
indicating a divergence, If a simple aileron con- 

trol is added alone, the positiveness of e can be in- 
creased and the airplane made spirally stable regardless 
of a small deficienby of dihedral. 

When 'the rudder control is added, the airplane cannot 
be spirally unstable, and the term e becomes indicative 
of, but not the criterion of; the damping of the coursa 
oscillation. The damping is evidently improved by large 
dihodra.1, side area, and control derivative Z,. 

None of these simple controls affects b, which vary 
closely ropras,onts the rolling subsidence, Therefore, 
this com$oncnt of the motion will be substantially un- 
chnngod by the controls in normal flight. 

A sstisfa,ctory approximate factorization has not yet 
been developed for the short oscillation, but its damping 
is probably improved by a large value of-coefficient c. 

The effect of the first and the second derivative 
oomponents in the controls is to raise the individual 
terms of (94) by one and two rows, respectively, and to 
add them to the original simple displacement co@ponents. 
That is, in the first column, the q, control contributes 
-'-m\cI to the c coofficiont. An nrc component will con- 
tribute -pnrc to the b torm.' And so on with tho rc- 
maininq torms. 

. 
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More detailed conclusions will require extensive cal- 
culations. . 

Nonideal Controls . 

There is no difficulty fn expanding equation (911, 
when the controls do not have negligible fnertia. Neglect- 
inq the higher derivative components of the -control, which 
are treated in a similar manner, and letting 

D2(Tn1/2~T)2 + D2[,(Tn,/2n!i!) =' C,, etc. 

Equation (91) expands to - 

(c,+l)(c,+l) 4, -+ (c,+O n& - (V-1) x~42 - 

- (C&+1) n$As + n@,-+(D-yv > = 0 (971 

or, when separated into ideal and nonideal components;' 

Ideal A, + nqA, - 'l,A, - q,A, + li+l@-y,) 

Ffrst order contrfbution +~G,+C2)Ao+c,(n,al-~,Pz)-can~A5 

Second order contribution f CL C2 A, ?.O (98) 

Then either the rudder or the aileron control is being 
considered alone, the frequency express&on simpliffes con- 
siderably. In its full form as given, it involves a ninth- 
order equation, but Cf ea fs prabably very small compared 
with the first-order terms, and gossibly may be neg.lected. 

The stability qf the motion can then be investigated 
by means of the natural-frequency expressions for the se?: 
tic. 

January 18, 1939. 

. . 
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Figure 2.- Comparison of methodsfor Aetzrmining stability of 
sextic equation. 
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Figure 3,- Effect of displacement control on period and damping 
of phyoid. 


